On Convergence of the Maximum Block Improvement Method

نویسندگان

  • Zhening Li
  • André Uschmajew
  • Shuzhong Zhang
چکیده

The so-called MBI (maximum block improvement) method is a greedy type approach to solve optimization problems where the decision variables can be grouped into a finite number of blocks. Assuming that optimizing over one block of variables while fixing all others is relatively easy, the MBI method then advocates to update the block of variables corresponding to the maximally improving block at each iteration, which is arguably a most natural and simple process to tackle block-structured problems with great potentials for engineering applications. It is therefore imperative to fully understand its convergence properties. In this paper we establish global and local linear convergence results for this method. The global convergence is established under the Lojasiewicz inequality assumption, while the local analysis invokes second-order assumptions. We study in particular the tensor optimization model with spherical constraints. Conditions for linear convergence of the famous power method for computing the maximum eigenvalue of a matrix follow in this framework as a special case. The condition is interpreted in various other forms for the rank-one tensor optimization model under spherical constraints. Numerical experiments are shown to support the convergence property of the MBI method for the randomly generated instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second ‎kind‎

Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...

متن کامل

Maximum Block Improvement and Polynomial Optimization

In this paper we propose an efficient method for solving the spherically constrained homogeneous polynomial optimization problem. The new approach has the following three main ingredients. First, we establish a block coordinate descent type search method for nonlinear optimization, with the novelty being that we only accept a block update that achieves the maximum improvement, hence the name of...

متن کامل

Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm

The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...

متن کامل

Generalized iterative methods for solving double saddle point problem

In this paper, we develop some stationary iterative schemes in block forms for solving double saddle point problem. To this end, we first generalize the Jacobi iterative method and study its convergence under certain condition. Moreover, using a relaxation parameter, the weighted version  of the Jacobi method together with its convergence analysis are considered. Furthermore, we extend a method...

متن کامل

Numerical solution of system of linear integral equations via improvement of block-pulse functions

In this article, a numerical method based on  improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015